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1 Introduction
In this report, we introduce relative Picard functors with respect to different sheafifications. The main
goal is to compare them under certain assumptions. In order to do this, we need the tool of rigidifications.
In the end, we loose a bit on our assumptions, and accordingly come to its generalization, rigidificators.

2 Notations and conventions
Let us first fix some notations throughout this whole report:
pSch {Xq denotes the category of schemes over a fixed scheme X with X-morphisms of schemes,

pSetsq denotes the category of sets and maps of sets, pAbq the category of abelian groups and group
morphisms between them.

Given a base scheme S, f : X Ñ S is called a scheme over S, the morphism f is called the structure
morphism. Denote by fT : X ˆS T Ñ T the base change with respect to T P pSch {Sq. When saying a
functor we always mean a covariant functor F : pSch {Sqopp Ñ pSetsq.
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By saying a diagram of sets A f
ÝÑ B

g
ÝÑ
ÝÑ

h

C is exact, we mean that f maps bijectively to the set
tβ P B | gpβq “ hpβqu.

3 Basics facts from algebraic geometry
Definition 3.1. (Site, [Sta] Tag/03NF) A site consists of a category C and a set M consisting of
families of morphisms with fixed target i.e. , the assignment to each U P ObjpCq of a collection of sets
of arrows tUi Ñ UuiPI , called coverings, so that the following conditions are satisfied:

(i) M contains all isomorphisms: if ϕ : V Ñ U is an isomorphism in C, then tϕ : V Ñ Uu is a covering,

(ii) Fiber products exist and M is stable under fiber product: if tUi Ñ UuiPI is a covering and V Ñ U
is a morphism in C, then

(a) for all i P I the fibre product Ui ˆU V exists in C;
(b) tUi ˆU V Ñ V uiPI is a covering.

(iii) M is stable under composition: if tϕi : Ui Ñ UuiPI is a covering and for all i P I we are given a
covering tψij : Uij Ñ UIu, then tϕi ˝ ψij : Uij Ñ Uu

pi,jqP
ś

iPItiuˆIi
is also a covering.

It is assumed that its collection of objects form a set and collection of coverings of a site is a set as well.
What we call a site is also called a category endowed with a pretopology by [SGA4II] Définition 1.3.

We now introduce some frequently used definitions of sites following [BLR] section 8.1 and [MilLEC].
Let S be a given scheme, and let X P pSch {Sq be a fixed scheme for the following discussion.

(1) Xfpqc is the site whose underlying category is pSch {Xq, whose covering tϕi : Ui Ñ UuiPI is defined as
any jointly surjective collection of maps such that each ϕ is flat and for each affine open V Ñ U , there
exists a finite set K, a map i : K Ñ I and affine open Vipkq Ă Uipkq such that V “

Ť

kPK ϕipkqpVipkqq.

(2) Xfppf is the site whose underlying category is pSch {Xq, whose covering is any jointly surjective
collection of flat and locally of finite presentation maps tUi Ñ UuiPI .

(3) Xét is the site whose underlying category is U Ñ X étale schemes over X, a subcategory of pSch {Xq,
whose covering is any tUi Ñ Uu jointly surjective collection of étale maps, locally of finite presenta-
tion.

(4) XZar is the site whose underlying category is pSch {Xq, whose covering is any jointly surjective
collection of open immersions tUi Ñ Uu.

We write Hi
pXtop, F q for the i-th sheaf cohomology group taken with respect to the top-site, with

top “ ét, fppf, fpqc, Zar. If we do not write any sub-index, we consider Zariski topology.

Definition 3.2. A functor F is called a sheaf with respect to M (or M-sheaf) if for all morphisms
T 1 Ñ T in M,
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(1) F p
š

Tiq Ñ
ś

F pTiq is an isomorphism, for pTiqiPI any family of S-schemes.

(2) F pT q Ñ F pT 1q Ñ F pT 1 ˆT T
1q is exact.

In practice, we often take T 1 “
š

Ti Ñ T for a covering tTiu.

Theorem 3.3. (Grothendieck) Let F be a representable functor from pSch {Sq to pSetsq, then F is a
sheaf with respect to Mfpqc.

Proof. See [BLR] proposition 1 or [FGA Explained] part I theorem 2.55.

With this theorem, it is natural for us to ask whether a functor is a Mfpqc-sheaf first if we want to
know if it is representable.

Example 3.4. For Z P pSch {Sq, the functor Gm : Z ÞÑ H0
pZ,O˚

Zq is a sheaf for all four topologies
mentioned above: it is represented by the S-scheme SpecpOSru, u

´1sq for u indeterminant.

4 Relative Picard functor
Definition 4.1. Define PicpXq to be the group of isomorphism classes of invertible sheaves on X, call
it the absolute Picard group of X (with respect to the Zariski topology).

Proposition 4.2. PicpXq – H1
pXét,Gmq – H1

pXZar,Gmq – H1
pXfppf ,Gmq – H1

pXfpqc,Gmq.

Proof. [Ha83] Ex. III, 4.5, p. 224 for Zariski case. Others see [FGA] p. 190-16 or [MilLEC] Theorem
11.4. The idea is that descent with respect to fpqc-morphisms turns line bundles to line bundles.

The functor PX{S defined by map T ÞÑ PicpX ˆS T q is not a sheaf, thus by theorem 3.3 it is not
representable. We need to do a sheafification process with respect to Mfppf and MZar, as in [BLR] page
201.

Definition 4.3. The fppf-sheaf associated to the functor

PX{S : pSch {Sqopp
fppf Ñ pSetsq, T ÞÑ PicpX ˆS T q

is called the relative Picard functor of X over S. It is denoted by PicX{S,fppf , or simply PicX{S if no
confusion is caused. For any T P pSch {Sq, we call PicX{SpT q the relative Picard group of X ˆS T over
T .

We know PX{S is actually a functor to pAbq with group operation given by tensor product. Similarly,
we denote by different sub-indexes the sheafification with respect to different Grothendieck topologies.

From the sheafification process, we know that for every T P pSch {Sq, each element of PicX{S,fppfpT q
is represented by an invertible sheaf L1 on XT 1 for some fppf covering T 1 Ñ T . Moreover, there must be
an fppf-covering T̄ Ñ T 1 ˆT T

1 such that the two pullbacks of L1 to XT̄ are isomorphic.
Furthermore, another such sheaf L1 on XT1 represents the same PicX{S,fppfpT q if and only if there is

an fppf-covering T 11 Ñ T1 ˆT T
1 such that the pullbacks of L1 and L1 to XT 11

are isomorphic. Of course,
similar considerations apply to the sheafifications with respect to the Zariski, étale, and fpqc topologies
as well.
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Proposition 4.4. For T P pSch {Sq, we have PicX{S,toppT q “ H0
pTtop,R

1 fT˚Gmq and top equals to Zar,
fppf, and ét.

Proof. All proofs are similar to the Zariski case, see [Ha83] III, 8.1.

Proposition 4.5. For T P pSch {Sq, p P N, the canonical morphisms from the Hp
pTét,Gmq to Hp

pTfppf ,Gmq
induced by morphism of sites ([MilLEC] definition 5.2 p40) are isomorphisms.

Proof. [Dix] p. 180.

The following proposition is our first result on comparison of different relative Picard functors, and
we get some useful byproducts in its proof.

Proposition 4.6. Let f : X Ñ S be a quasi-compact and quasi-separated morphism. Assume that
f˚pOXq “ OS (resp.f˚pOXq “ OS holds universally, i.e. f˚pOXT

q “ OT holds for any base change
T Ñ S), then if T P pSch {Sq is flat over S ( resp. for each T P pSch {Sq), the canonical sequence

0 PicpT q PicpX ˆS T q PicX{SpT q H2
pTét, fT˚pGmqq H2

pXT,ét,Gmq

is exact. If f admits a section, then the sequence

0 PicpT q PicpX ˆS T q PicX{SpT q 0

is exact.

Proof. For any T P pSch {Sq, we assume one of the following holds: (1) f˚pOXq “ OS holds universally.
(2) T is flat over S. The following process is valid for top- chosen as Zar-, ét- or fppf-. The Leray
spectral sequence (see [SGA4II] Exp.V. §3) associated to XT,top Ñ Ttop and to the sheaf Gm gives:

0 H1
pTtop, fT˚pGmqq H1

pXT,top,Gmq H0
pTtop,R

1 fT˚pGmqq

H2
pTtop, fT˚pGmqq H2

pXT,top,Gmq ¨ ¨ ¨

(4.1)

Notice that PicX{S,toppT q “ H0
pTtop,R

1 fT˚pGmqq from proposition 4.4. By proposition 4.2 we have
H1
pXT,top,Gmq “ PicpXT q, and H1

pTtop, fT˚pGmqq “ PicpT q. These two equalities are independent of
the topology if f˚pOXq “ OS holds universally, from which we have fT˚pGmq “ Gm, or if f is proper 1.
The beginning of exact sequence (4.1) hence becomes

0 PicpT q PicpX ˆS T q PicX{S,toppT q (4.2)

1By Stein factorization ([Sta], 03GX), fT “ gT ˝ f 1T such that f 1T,˚ : XT Ñ X 1
T is proper with f 1T,˚pOXT

q “

OX1
T

and gT : X 1
T Ñ T is a finite map which is acyclic for étale topology (thus for Zariski topology by de-

scent), thus H1pTtop, gT,˚pO˚X1
T
qq “ H1ppX 1

T qtop,O˚X1
T
q (cf. [HP] Proposition 2.8 also), then H1pTtop, fT,˚pO˚XT

qq “

H1ppX 1
T qtop,O˚X1

T
q for top “ Zar, ét. The group H1ppX 1

T qtop,O˚X1
T
q is independent of topology by proposition 4.2.
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We are motivated to introduce another functor: Picquot : T ÞÑ PicpX ˆS T q{PicpT q. Hence (4.2)
induces a natural inclusion Picquot ãÑ PicX{S,top of functors. If f has a section ε, then fε “ 1 induces

ε˚f˚ “ 1. For each p, there is a left inverse of the map Hp
pT, fT˚pGmq

f˚
ÝÑ Hp

pXT ,Gmq, so f˚ is injective.
From exactness of (4.1), we have Picquot

„
ÝÑ PicX{S,top.

We now close the general argument for the three top-cases. We compare the two exact sequences
(4.1) for fppf- and ét- topology respectively, and use proposition 4.5 for p “ 2. We see they have all five
terms pairwise isomorphic except the middle ones. Then five lemma ensures that the middle terms are
isomorphic too. In other words, we get that PicX{S,ét – PicX{S,fppf whenever f is proper or f˚pOXq “ OS

holds universally.

Corollary 4.7. Assume f˚pOXq “ OS holds universally and f admits a section ε : S Ñ X, fε “ 1, the
functor Picquot is a sheaf with respect to Zariski topology.

5 Rigidifications and rigidificators

5.1 Rigidifications

Now we begin our introduction to rigidificators which will serve as a powerful tool for the comparison
between PicX{S,fppf , Picquot, PicX{S,ét, PicX{S,Zar and PicX{S,fpqc under certain assumptions. Recall that
f : X Ñ S is the structure map. For this subsection on rigidifications, we make the following assumption.

Assumption 5.1. f˚pOXq “ OS holds universally and f admits a section ε : S Ñ X, fε “ 1.

Definition 5.2. Let T P pSch {Sq and L be a sheaf on XT . A rigidification along εT or εT -rigidification
is a choice of isomorphism α : OT

„
ÝÑ ε˚T pLq. The pair pL, αq is called an invertible sheaf rigidified along

the section εT .
Following [Raynaud] p30, we define a homomorphism between pL, αq and pM , βq as a homomorphism

u : LÑ M such that the following diagram commutes:

pL, αq pM , βq

OT

ε˚T puq

α β

(5.1)

Given two pairs pL, αq, pM , βq, we also define their sum as pL bM , γq, where γ is the composite
morphism:

γ : OT Ñ OT bOT
OT

αbβ
ÝÝÑ pεT q

˚LbOT
pεT q

˚M Ñ pεT q
˚
pLbM q (5.2)

Definition 5.3. Define the functor pPX{S, εq : pSch {Sq Ñ pSetsq as follows: it associates each T P

pSch {Sq to the set pPX{S, εqpT q of isomorphism classes of invertible sheaves on XT that are rigidified
along the section εT : T Ñ XT .

5



We now justify the name rigidification:

Lemma 5.4. Recall that we are under assumption 5.1. Let T P pSch {Sq, L be an invertible sheaf on
XT and α be an ε-rigidification. Then every automorphism of the pair pL, αq is trivial.

Proof. An automorphism of pL, αq is an automorphism v : L „
ÝÑ L such that ε˚Tv ˝α : OT

„
ÝÑ ε˚TL

„
ÝÑ ε˚TL

is equal to α, we must have ε˚Tv “ 1. Note that:

v P HompL,Lqˆ “ H0
pXT ,H ompL,Lqqˆ “ H0

pXT ,OXT
q
ˆ
“ H0

pT,OT q
ˆ

where the last ‘=’ is from OT
„
ÝÑ f˚OXT

. v P H0
pT,OT q

ˆ implies v “ f˚Tu for some u P H0
pT,OT q

ˆ.
Applying ε˚Tf˚T “ 1 and ε˚Tv “ 1, we have u “ 1, thus v “ 1.

Lemma 5.5. Recall that we are under the assumption 5.1. Define the functor pPX{S, εqpT q for T P

pSch {Sq by
pPX{S, εqpT q :“ tpL, αq | L is an invertible sheaf on XT , α is an εT -rigidification of Lu .
Then there is a natural isomorphism ρ : pPX{S, εq Ñ Picquot , such that ρT maps pL, αq to L for each

T .

Proof. Let M be an invertible sheaf on XT that represents λ P PicquotpT q. Set L :“ M b pf˚T ε
˚
TM q´1,

which also represents λ as ε˚TM is in PicpT q. As ε˚TL “ ε˚TM b ε˚Tf
˚
T ε
˚
TM´1, ε˚Tf˚T “ 1 and the canonical

isomorphism ε˚TM b ε˚TM´1 „
ÝÑ OT together give ε˚TL “ ε˚TM b ε˚TM´1 „

ÝÑ OT a εT -rigidification, thus
ρT is surjective.

Let pL, αq be an element in the kernel of ρT , then there is an invertible sheaf N on T and an
isomorphism ν : L „

ÝÑ f˚TN . Set ω :“ ε˚Tν ˝ α. Then ν : pL, αq „
ÝÑ pf˚TN , ωq and f˚Tω : pOXT

, 1q
„
ÝÑ

pf˚TN , ωq, thus ρT is injective.

Proposition 5.6. Under the assumption 5.1, pPX{S, εq is a sheaf with respect to fpqc-topology.

Proof. Consider the sequence:

pPX{S, εqpT q Ñ pPX{S, εqpT
1
q Ñ pPX{S, εqpT

2
q

where T 1 Ñ T is an fpqc-morphism and T 2 “ T 1 ˆT T
1, The first arrow is injective from [BLR] §6.1

theorem 4 which asserting that the fpqc-descent is effective. Fix pL1, αq P pPX{S, εqpT 1q whose image in
pPX{S, εqpT

2q coincide. We introduce the following notations: pri : T 2 Ñ T 1, pi : XT 2 Ñ XT 1 , αi by
pull-back of α via pi, for i “ 1, 2; prij : T3 :“ T 1 ˆT T

1 ˆT T
1 Ñ T 2 and pij : XT3 Ñ XT 2 and αij by

pull-back of α via pij,for i ă j, i, j P t1, 2, 3u.
The isomorphism ω : p˚1pL1q

„
ÝÑ p˚2pL1q between the two pull-backs of L1 to XT 2 is compatible with

rigidifications because pairs pp˚i pL1q, pr˚i pαqq naturally satisfy ε˚T 2ω ˝ α1 “ α2 using ε˚T 2 ˝ p˚i “ pr˚i ˝ε
˚
T 1 .

Let ωij be the pull-back with respect to pij, then ω´1
13 ω23ω12 is an automorphism of the pull-back of

pL1, αq via the projection p˚13p
˚
1 : XT3 Ñ XT 1 , by lemma 5.4, it must be trivial, so ω is a descent datum.

The descent is effective by [BLR] §6.1 theorem 4, thus the above sequence is exact.
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We conclude the comparison results we get so far under assumption 5.1. Lemma 5.5 tells us
pPX{S, εq

„
ÝÑ Picquot. In the proof of proposition 4.6, we see PicX{S,fppf – PicX{S,ét. The exact se-

quence (4.1) produces Picquot
„
ÝÑ PicX{S,Zar and Picquot

„
ÝÑ PicX{S,fppf . Proposition 5.6 says pPX{S, εq is a

fpqc-sheaf hence canonically isomorphic to PicX{S,fpqc.
In conclusion, we get pPX{S, εq – Picquot – PicX{S,Zar – PicX{S,ét – PicX{S,fppf – PicX{S,fpqc if the

assumption 5.1 is satisfied.
When f˚pOXq “ OS holds universally but we do not have the existence of a section ε : S Ñ X, we

need to generalize the notion of rigidifications to rigidificators.

5.2 Rigidificators

Definition 5.7. If f : X Ñ S is proper, finitely generated, and flat, a subscheme iY : Y ãÑ X, with Y
being finite, flat and of finite presentation over S, is called a rigidificator of the relative Picard functor
PicX{S (or of f) if the functor

pSch {Sqopp
Ñ pSetsq, T ÞÑ ΓpXT ,OXT

q

is a subfunctor of the functor

pSch {Sqopp
Ñ pSetsq, T ÞÑ ΓpYT ,OYT q,

i.e. if the map ΓpiYT q : ΓpXT ,OXT
q Ñ ΓpYT ,OYT q is injective for any T P pSch {Sq.

If f˚pOXq “ OS holds universally, each section ε : S Ñ X of f defines a rigidificator of f , namely
the closed subscheme εpSq Ă X.

Rigidificators exist, for example, in the following two cases (cf. [Raynaud] Prop.2.2.3):

(1) If the fibers of f do not have embedded components, then f admits a rigidificator locally over S
with respect to the étale topology.

(2) If S is the spectrum of a discrete valuation ring, then f has a rigidificator.

Definition 5.8. Assume that f : X Ñ S is proper, finitely generated, and flat. Let Y be a rigidificator
of f . Then given T P pSch {Sq, an invertible sheaf L on XT is called rigidified along YT (or YT -rigidified)
if there is an isomorphism α : OYT

„
ÝÑ i˚YT pLq, denoted by pair pL, αq.

Similarly to definition 5.2 we can define maps and sum between pL, αq and pM , βq so that they form
an abelian group. And similarly to lemma 5.4, we can prove that Y -rigidified invertible sheaves do not
admit non-trivial automorphisms.

The functor pPicX{S, Y q : pSch {Sqopp Ñ pSetsq defined by sending T P pSch {Sq to the set of iso-
morphism classes of invertible sheaves on XT which are Y -rigidified is actually a Zariski sheaf and, by
descent, it is an fpqc-sheaf.

We can relate pPicX{S, Y q to PicX{S by projection to first factor just as we did for rigidifications case,
but this is no longer an isomorphism in general. We need to know how much they differ.

We do some preparations on algebraic geometry by presenting the following definitions and theorem.
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Definition 5.9. An OX-module F is called locally of finite presentation if it is locally isomorphic to
the cokernel of a homomorphism Om

X Ñ On
X for some m,n P N.

Definition 5.10. Assume that f : X Ñ S is proper and of finite presentation, and consider an OX-
module F locally of finite presentation, which is flat over S. Then F is called cohomologically flat over
S in dimension 0 if the formation of direct image f˚pF q commutes with base change, i.e. for any base
change diagram:

XT X

T S

u

fT f

v

(5.3)

the canonical map v˚f˚pF q Ñ fT,˚u
˚pF q is an isomorphism. If this condition holds for F “ OX , we

say that f is cohomologically flat in dimension 0.

Theorem 5.11. Let f : X Ñ S be a proper morphism which is finitely presented. Let F be an OX-
module locally of finite presentation that is S-flat. Then there exists an OS-module L locally of finite
presentation, unique up to canonical isomorphism, such that there is an isomorphism of functors

f˚pF bOS
M q

„
ÝÑ H omOS

pL ,M q

that is functorial in all quasi-coherent OS-modules M . In particular, there is an isomorphism of functors

ΓpX,F bOS
M q

„
ÝÑ HomOS

pL ,M q

The OS-module L is locally free if and only if F is cohomologically flat over S in dimension 0. In this
case, L and f˚pF q are dual to each other and f˚pF q is locally free.

Proof. See [EGA III.2] 7.7.6.

If f : X Ñ S is proper, finitely generated, and flat. Set F “ OX and M “ OT for T P pSch {Sq, the
statement of theorem 5.11 becomes isomorphisms functorial in T :

ΓpXT ,OXT
q
„
ÝÑ HomOS

pL ,OT q
„
ÝÑ HomSpT, V pLqq (5.4)

where V pLq :“ SpecpSymOS
pLqq (see [EGA II] definition I.7.8) and [EGA II] (I.7.13) gives the last

isomorphism above. This can be read as: V pLq represents the functor: ΓpXp´q,OXp´qq. The scheme
V pLq is called total space of the module L. It is called locally free if L is so as OS-module, which is
equivalent to say that V pLq is smooth over S.

Corollary 5.12. If f : X Ñ S is proper, finitely generated, and flat, let L be the OS-module associated
to f˚pOXq in the sense of Theorem 5.11. Then the functor

pSch {Sqopp
Ñ pSetsq, T ÞÑ ΓpXT ,OXT

q

is represented by the total space V “ V pLq of L. Moreover, V is locally free if and only if L is
cohomologically flat in dimension 0.
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We have a characterization of rigidificators. For X, Y as in Definition 5.8, we use (5.4) to get their
“global section after any base change” functor represented by VX and VY respectively.

Proposition 5.13. If f : X Ñ S is proper, finitely generated, and flat, consider a subscheme iY : Y ãÑ

X which is finite, flat and of finite presentation over S. Let VX P pSch {Sq ( resp.VY ) be representing
the functor of global sections on X ( resp.on Y ). The following conditions are equivalent:

(a) Y is a rigidificator of f .

(b) The morphism VX Ñ VY induced by the inclusion iY : Y ãÑ X, is a closed immersion.

Proof. Let L (resp. L1) denote the OS-module which is obtained from theorem 5.11 for f : X Ñ S
(resp. f 1 “ f ˝ iY : Y Ñ S). The for all T P pSch {Sq such that OT is a quasi-coherent OS-module, the
inclusion iY : Y ãÑ X gives:

0 Ñ HomOS
pL,OT q Ñ HomOS

pL1,OT q (5.5)

Using identifications ΓpXT ,OXT
q – HomOS

pL,OT q and ΓpYT ,OYT q – HomOS
pL1,OT q from (5.4), we see

that (5.5) is exact if and only if Y is a rigidificator of f . Now (5.5) corresponds to a sequence:

L1 Ñ LÑ 0 (5.6)

of OX-modules that is exact if and only if (5.5) is exact for all T . Moreover, (5.6) yields a sequence
between associated symmetric OS-algebras

SymOS
pL1q Ñ SymOS

pLq Ñ 0 (5.7)

which is exact if and only if it is exact of degree 1, if and only if (5.6) is exact.

Let V “ VX , it represents a functor from schemes to rings, thus is a ring scheme.

Lemma 5.14. If f : X Ñ S is proper, finitely generated, and flat, then the subfunctor of units T ÞÑ
ΓpXT ,O˚

XT
q is represented by an open subscheme V ˚ Ă V which is a group scheme.

Proof. See [BLR] §8.1 Lemma 10.

Let f : X Ñ S be proper, finitely generated, and flat. The canonical map OS Ñ f˚pOXq defines
a morphism Ga Ñ VX that is a closed immersion, as can be seen by the proof of proposition 5.13.
Restricting to the subscheme of units yields Gm Ñ V ˚X , which is again closed.

We see that f˚pOXq “ OS holds universally if and only if Ga Ñ VX is an isomorphism.
Let Y be a rigidificator of f : X Ñ S. The closed immersion VX ãÑ VY gives rise to V ˚X ãÑ V ˚Y ,

and there is a canonical map V ˚Y Ñ pPicX{S, Y q sending a P ΓpYT ,O˚
YT
q to pOXT

, αq, where α : OYT
„
ÝÑ

i˚YT pOXT
q – OYT is the multiplication by a. We hence have an exact sequence of sheaves in Zariski

topology:
0 Ñ V ˚X Ñ V ˚Y Ñ pPicX{S, Y q Ñ PicX{S Ñ 0 (5.8)

Moreover, it is even exact with respect to étale topology (see [Raynaud] 2.1.2 and 2.4.1).
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